skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Leroy, Adam_K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT In this paper, we study the filamentary substructure of 3.3 $$\mu$$m polycyclic aromatic hydrocarbon (PAH) emission from JWST/NIRCam observations in the base of the M 82 star-burst driven wind. We identify plume-like substructure within the PAH emission with widths of $$\sim$$50 pc. Several of those plumes extend to the edge of the field-of-view, and thus are at least 200–300 pc in length. In this region of the outflow, the vast majority ($$\sim$$70 per cent) of PAH emission is associated with the plumes. We show that those structures contain smaller scale ‘clouds’ with widths that are $$\sim$$5–15 pc, and they are morphologically similar to the results of ‘cloud-crushing’ simulations. We estimate the cloud-crushing time-scales of $$\sim$$0.5–3 Myr, depending on assumptions. We show this time-scale is consistent with a picture in which these observed PAH clouds survived break-out from the disc rather than being destroyed by the hot wind. The PAH emission in both the mid-plane and the outflow is shown to tightly correlate with that of Pa $$\alpha$$ emission (from Hubble Space Telescope data), at the scale of both plumes and clouds, though the ratio of PAH-to-Pa $$\alpha$$ increases at further distances from the mid-plane. Finally, we show that the outflow PAH emission reaches a local minimum in regions of the M 82 wind that are bright in X-ray emission. Our results are consistent cold gas in galactic outflows being launched via hierarchically structured plumes, and those small scale clouds are more likely to survive the wind environment when collected into the larger plume structure. 
    more » « less
  2. Abstract Measuring the properties of the cold neutral medium (CNM) in low-metallicity galaxies provides insights into heating and cooling mechanisms in early Universe-like environments. We report detections of two localized atomic neutral hydrogen (Hi) absorption features in NGC 6822, a low-metallicity (0.2Z) dwarf galaxy in the Local Group. These are the first unambiguous CNM detections in a low-metallicity dwarf galaxy outside the Magellanic Clouds. The Local GroupL-band Survey (LGLBS) enabled these detections, due to its high spatial (15 pc for Hiemission) and spectral (0.4 km s−1) resolution. We introduce LGLBS and describe a custom pipeline for searching for Hiabsorption at high angular resolution and extracting associated Hiemission. A detailed Gaussian decomposition and radiative transfer analysis of the NGC 6822 detections reveals five CNM components, with key properties: a mean spin temperature of 32 ± 6 K, a mean CNM column density of 3.1 × 1020cm−2, and CNM mass fractions of 0.33 and 0.12 for the two sightlines. Stacking nondetections does not reveal low-level signals below our median optical depth sensitivity of 0.05. One detection intercepts a star-forming region, with the Hiabsorption profile encompassing the CO (2−1) emission, indicating coincident molecular gas and a depression in high-resolution Hiemission. We also analyze a nearby sightline with deep, narrow Hiself-absorption dips, where the background warm neutral medium is attenuated by intervening CNM. The association of CNM, CO, and Hαemissions suggests a close link between the colder, denser Hiphase and star formation in NGC 6822. 
    more » « less
  3. Abstract We present a near-infrared (NIR) candidate star cluster catalog for the central kiloparsec of M82 based on new JWST NIRCam images. We identify star cluster candidates using the F250M filter, finding 1357 star cluster candidates with stellar masses >104M. Compared to previous optical catalogs, nearly all (87%) of the candidates we identify are new. The star cluster candidates have a median intrinsic cluster radius of ≈1 pc and stellar masses up to 106M. By comparing the color–color diagram to dust-freeyggdrasilstellar population models, we estimate that the star cluster candidates haveAV∼ 3−24 mag, corresponding toA2.5μm∼ 0.3−2.1 mag. There is still appreciable dust extinction toward these clusters into the NIR. We measure the stellar masses of the star cluster candidates, assuming ages of 0 and 8 Myr. The slope of the resulting cluster mass function isβ= 1.9 ± 0.2, in excellent agreement with studies of star clusters in other galaxies. 
    more » « less
  4. Abstract The EDGE-CALIFA survey provides spatially resolved optical integral-field unit and CO spectroscopy for 125 galaxies selected from the Calar Alto Legacy Integral Field Area Survey (CALIFA) Data Release 3 sample. The Extragalactic Database for Galaxy Evolution (EDGE) presents the spatially resolved products of the survey as pixel tables that reduce the oversampling in the original images and facilitate comparison of pixels from different images. By joining these pixel tables to lower-dimensional tables that provide radial profiles, integrated spectra, or global properties, it is possible to investigate the dependence of local conditions on large-scale properties. The database is freely accessible and has been utilized in several publications. We illustrate the use of this database and highlight the effects of CO upper limits on the inferred slopes of the local scaling relations between the stellar mass, star formation rate (SFR), and H2surface densities. We find that the correlation between H2and SFR surface density is the tightest among the three relations. 
    more » « less
  5. ABSTRACT Galactic bars can drive cold gas inflows towards the centres of galaxies. The gas transport happens primarily through the so-called bar dust lanes, which connect the galactic disc at kpc scales to the nuclear rings at hundreds of pc scales much like two gigantic galactic rivers. Once in the ring, the gas can fuel star formation activity, galactic outflows, and central supermassive black holes. Measuring the mass inflow rates is therefore important to understanding the mass/energy budget and evolution of galactic nuclei. In this work, we use CO datacubes from the PHANGS-ALMA survey and a simple geometrical method to measure the bar-driven mass inflow rate on to the nuclear ring of the barred galaxy NGC 1097. The method assumes that the gas velocity in the bar lanes is parallel to the lanes in the frame co-rotating with the bar, and allows one to derive the inflow rates from sufficiently sensitive and resolved position–position–velocity diagrams if the bar pattern speed and galaxy orientations are known. We find an inflow rate of $$\dot{M}=(3.0 \pm 2.1)\, \rm M_\odot \, yr^{-1}$$ averaged over a time span of 40 Myr, which varies by a factor of a few over time-scales of ∼10 Myr. Most of the inflow appears to be consumed by star formation in the ring, which is currently occurring at a star formation rate (SFR) of $$\simeq\!1.8\!-\!2 \, \rm M_\odot \, yr^{-1}$$, suggesting that the inflow is causally controlling the SFR in the ring as a function of time. 
    more » « less
  6. Abstract We present new observations of the central 1 kpc of the M82 starburst obtained with the James Webb Space Telescope near-infrared camera instrument at a resolutionθ∼ 0.″05–0.″1 (∼1–2 pc). The data comprises images in three mostly continuum filters (F140M, F250M, and F360M), and filters that contain [Feii] (F164N), H2v= 1 → 0 (F212N), and the 3.3μm polycyclic aromatic hydrocarbon (PAH) feature (F335M). We find prominent plumes of PAH emission extending outward from the central starburst region, together with a network of complex filamentary substructures and edge-brightened bubble-like features. The structure of the PAH emission closely resembles that of the ionized gas, as revealed in Paschenαand free–free radio emission. We discuss the origin of the structure, and suggest the PAHs are embedded in a combination of neutral, molecular, and photoionized gas. 
    more » « less
  7. Abstract We explore the relationship between mid-infrared (mid-IR) and CO rotational line emission from massive star-forming galaxies, which is one of the tightest scalings in the local universe. We assemble a large set of unresolved and moderately (∼1 kpc) spatially resolved measurements of CO (1–0) and CO (2–1) intensity,ICO, and mid-IR intensity,IMIR, at 8, 12, 22, and 24μm. TheICOversusIMIRrelationship is reasonably described by a power law with slopes 0.7–1.2 and normalizationICO∼ 1 K km s−1atIMIR∼ 1 MJy sr−1. Both the slopes and intercepts vary systematically with choice of line and band. The comparison between the relations measured for CO (1–0) and CO (2–1) allow us to infer that R 21 I MIR 0.2 , in good agreement with other work. The 8μm and 12μm bands, with strong polycyclic aromatic hydrocarbon (PAH) features, show steeper CO versus mid-IR slopes than the 22 and 24μm, consistent with PAH emission arising not just from CO-bright gas but also from atomic or CO-dark gas. The CO-to-mid-IR ratio correlates with global galaxy stellar mass (M) and anticorrelates with star formation rate/M. At ∼1 kpc resolution, the first four PHANGS–JWST targets show CO-to-mid-IR relationships that are quantitatively similar to our larger literature sample, including showing the steep CO-to-mid-IR slopes for the JWST PAH-tracing bands, although we caution that these initial data have a small sample size and span a limited range of intensities. 
    more » « less